Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Plant Cell ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513608

RESUMO

Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper. We report a mutant called meerling-1 (mrl-1), which shows a high penetrance of suspensor-derived polyembryony due to delayed development of the embryo proper. Eventually, embryos from both apical and suspensor lineages successfully develop into normal plants and complete their life cycle. We identified the causal mutation as a genomic rearrangement altering the promoter of the Arabidopsis U3 SMALL NUCLEOLAR RNA-ASSOCIATED PROTEIN 18 (UTP18) homolog that encodes a nucleolar-localized WD40-repeat protein involved in processing 18S pre-ribosomal RNA. Accordingly, root-specific knockout of UTP18 caused growth arrest and accumulation of unprocessed 18S pre-rRNA. We generated the mrl-2 loss-of-function mutant and observed asynchronous megagametophyte development causing embryo sac abortion. Together, our results indicate that promoter rearrangement decreased UTP18 protein abundance during early-stage embryo proper development, triggering suspensor-derived embryogenesis. Our data support the existence of non-cell autonomous signaling from the embryo proper to prevent direct reprogramming of the suspensor towards embryonic fate.

2.
Food Res Int ; 179: 114005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342532

RESUMO

The inappropriate employment of antibiotics across diverse industries has engendered profound apprehensions concerning their cumulative presence within human bodies and food commodities. Consequently, many nations have instituted stringent measures limiting the admissible quantities of antibiotics in food items. Nonetheless, conventional techniques employed for antibiotic detection prove protracted and laborious, prompting a dire necessity for facile, expeditious, and uncomplicated detection methodologies. In this regard, aptamer-based fluorescent DNA biosensors (AFBs) have emerged as a sanguine panacea to surmount the limitations of traditional detection modalities. These ingenious biosensors harness the binding prowess of aptamers, singular strands of DNA/RNA, to selectively adhere to specific target antibiotics. Notably, the AFBs demonstrate unparalleled selectivity, affinity, and sensitivity in detecting antibiotics. This comprehensive review meticulously expounds upon the strides achieved in AFBs for antibiotic detection, particularly emphasizing the labeling modality and the innovative free-label approach. It also elucidates the design principles behind a diverse array of AFBs. Additionally, a succinct survey of signal amplification strategies deployed within these biosensors is provided. The central objective of this review is to apprise researchers from diverse disciplines of the contemporary trends in AFBs for antibiotic detection. By doing so, it aspires to instigate a concerted endeavor toward the development of heightened sensitivity and pioneering AFBs, thereby contributing to the perpetual advancement of antibiotic detection methodologies.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Antibacterianos , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , DNA , Corantes
3.
J Leukoc Biol ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315716

RESUMO

The mechanism underlying autophagy in paroxysmal nocturnal hemoglobinuria (PNH) remains largely unknown. We previously sequenced the entire genome exon of the CD59- cells from 13 patients with PNH and found genes such as CUX1 encoding Cut-like homeobox 1. Peripheral blood samples from nine patients with PNH and seven healthy controls were obtained to measure CUX1 expression. The correlation between CUX1 mRNA expression and PNH clinical indicators was analyzed. To simulate CUX1 expression in patients with PNH, we generated a panel of PNH cell lines by knocking out PIGA in K562 cell lines and transfected lentivirus with CUX1. CCK-8 and EDU assay assessed cell proliferation. Western blotting was used to detect Beclin1, LC3A, LC3B, ULK1, PI3K, AKT, p-AKT, mTOR, and p-mTOR protein levels. Autophagosomes were observed with transmission electron microscopy. Chloroquine was used to observe CUX1 expression in PNH after autophagy inhibition. Leukocytes from patients with PNH had lower levels of CUX1 mRNA expression and protein content than healthy controls. The lactose dehydrogenase level and the percentage of PNH clones were negatively correlated with CUX1 relative expression. We reduced CUX1 expression in a PIGA-knockout K562 cell line, leading to increased cell proliferation. Levels of autophagy markers Beclin1, LC3B, LC3A and ULK1 increased, and autophagosomes increased. Furthermore, PI3K/AKT/mTOR protein phosphorylation levels were lower. CUX1 expression did not change and cell proliferation decreased in CUX1 knocked down PNH cells after inhibition of autophagy by chloroquine. In brief, CUX1 loss-of-function mutation resulted in stronger autophagy in PNH.

4.
Sci Total Environ ; 918: 170622, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325490

RESUMO

In this study, the aerosol size distributions, cloud condensation nuclei (CCN) number concentration (NCCN), single-particle chemical composition and meteorological data were collected from May 12 to June 8, 2017, at the summit of Mt. Tai. The effects of new particle formation (NPF) events and aerosol chemical components on CCN at Mt. Tai were analyzed in detail. The results showed that, NPF events significantly enhanced the CCN population, and the enhancement effect increased with increasing supersaturation (SS) value at Mt.Tai. NCCN at SS ranging from 0.1 to 0.9 % on NPF days was 10.9 %, 36.5 %, 44.6 %, 53.5 % and 51.5 % higher than that on non-NPF days from 10:00-13:00 as NPF events progressed. The effect of chemical components on CCN activation under the influence of NPF events was greater than that in the absence of NPF events. The correlation coefficients of EC-Nitrate particles (EC-Sulfate particles) and CCN at all SS levels on NPF days were 1.31-1.59 times (1.17-1.35 times) higher than those on non-NPF days. Nitrate particles promoted CCN activation but sulfate particles inhibited activation at Mt. Tai. There are differences or even opposite effects of the same group of particles on CCN activation under the influence of NPF events in different air masses. EC-Sulfate particles inhibited CCN activation at all SS levels for type I but weakly promoted activation at lower SS ranging from 0.1 to 0.3 % and weakly inhibited it at higher 0.9 % SS for type II. OCEC particles significantly inhibited CCN activation for type II, and this effect decreased with increasing SS. OCEC particles only weakly inhibited activation at SS ranging from 0.5 to 0.7 % for type I. OCEC particles only weakly inhibited this process at 0.1 % SS, while they very weakly promoted activation for SS > 0.1 %. This reveals that the CCN activity is not only related to the chemical composition of the particles, but the mixing state also has an important effect on the CCN activity.

5.
Math Biosci Eng ; 21(1): 272-299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303423

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification involved in various biological activities. Computational methods have been developed for the detection of m6A sites in Saccharomyces cerevisiae at base-resolution due to their cost-effectiveness and efficiency. However, the generalization of these methods has been hindered by limited base-resolution datasets. Additionally, RMBase contains a vast number of low-resolution m6A sites for Saccharomyces cerevisiae, and base-resolution sites are often inferred from these low-resolution results through post-calibration. We propose MTTLm6A, a multi-task transfer learning approach for base-resolution mRNA m6A site prediction based on an improved transformer. First, the RNA sequences are encoded by using one-hot encoding. Then, we construct a multi-task model that combines a convolutional neural network with a multi-head-attention deep framework. This model not only detects low-resolution m6A sites, it also assigns reasonable probabilities to the predicted sites. Finally, we employ transfer learning to predict base-resolution m6A sites based on the low-resolution m6A sites. Experimental results on Saccharomyces cerevisiae m6A and Homo sapiens m1A data demonstrate that MTTLm6A respectively achieved area under the receiver operating characteristic (AUROC) values of 77.13% and 92.9%, outperforming the state-of-the-art models. At the same time, it shows that the model has strong generalization ability. To enhance user convenience, we have made a user-friendly web server for MTTLm6A publicly available at http://47.242.23.141/MTTLm6A/index.php.


Assuntos
Adenosina , Saccharomyces cerevisiae , Humanos , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Redes Neurais de Computação , Aprendizado de Máquina
6.
World Neurosurg ; 185: 181-192, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286321

RESUMO

OBJECTIVE: This study aimed to evaluate the safety and efficacy of the Gekko coil system in treating intracranial aneurysms (IAs) in clinical practice. METHODS: A prospective multicenter randomized open-label parallel positive control noninferiority trial was conducted by 11 centers in China. Patients with a target IA were randomized 1:1 to coiling with either Gekko or Axium coils. The primary outcome was successful aneurysm occlusion at 6 months postoperative follow-up, whereas the secondary outcomes included the successful occlusion aneurysm rate in the immediate postoperative period, recanalization rate at the 6 months follow-up, and technical success and security. RESULTS: Between May 2018 and September 2020, 256 patients were enrolled and randomized. Per-protocol analysis showed that the successful aneurysm occlusion rate at 6 months was 96.08% for the Gekko coil group compared with 96.12% in the Axium coil group, with a difference of -0.04% (P = 0.877). The successful immediate aneurysm occlusion rates were 86.00% and 77.45% in the Gekko coil group and the Axium coil group, respectively, showing no significant difference between the 2 groups (P = 0.116), whereas the recanalization rates during the 6 months follow-up were 2.02% and 1.96% in the Gekko and Axium coil groups, respectively, which was not statistically significant (P = 1.000). CONCLUSIONS: This trial showed that the Gekko coil system was noninferior to the Axium coil system in terms of efficacy and safety for IA embolization. In clinical practice, the Gekko coil system can be considered safe and effective for treating patients with IA.

7.
Adv Sci (Weinh) ; 11(13): e2305756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189598

RESUMO

Currently available guided bone regeneration (GBR) films lack active immunomodulation and sufficient osteogenic ability- in the treatment of periodontitis, leading to unsatisfactory treatment outcomes. Challenges remain in developing simple, rapid, and programmable manufacturing methods for constructing bioactive GBR films with tailored biofunctional compositions and microstructures. Herein, the controlled electroassembly of collagen under the salt effect is reported, which enables the construction of porous films with precisely tunable porous structures (i.e., porosity and pore size). In particular, bioactive salt species such as the anti-inflammatory drug diclofenac sodium (DS) can induce and customize porous structures while enabling the loading of bioactive salts and their gradual release. Sequential electro-assembly under pre-programmed salt conditions enables the manufacture of a Janus composite film with a dense and DS-containing porous layer capable of multiple functions in periodontitis treatment, which provides mechanical support, guides fibrous tissue growth, and acts as a barrier preventing its penetration into bone defects. The DS-containing porous layer delivers dual bio-signals through its morphology and the released DS, inhibiting inflammation and promoting osteogenesis. Overall, this study demonstrates the potential of electrofabrication as a customized manufacturing platform for the programmable assembly of collagen for tailored functions to adapt to specific needs in regenerative medicine.


Assuntos
Periodontite , Tecidos Suporte , Humanos , Tecidos Suporte/química , Porosidade , Osteogênese , Colágeno/química , Periodontite/tratamento farmacológico
8.
BMC Cancer ; 24(1): 26, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166756

RESUMO

BACKGROUND: Epigenetic alterations contribute greatly to the development and progression of colorectal cancer, and effect of aberrant miR-622 expression is still controversial. This study aimed to discover miR-622 regulation in CRC proliferation. METHODS: miR-622 expression and prognosis were analyzed in clinical CRC samples from Nanfang Hospital. miR-622 regulation on cell cycle and tumor proliferation was discovered, and FOLR2 was screened as functional target of miR-622 using bioinformatics analysis, which was validated via dual luciferase assay and gain-of-function and loss-of-function experiments both in vitro and in vivo. RESULTS: miR-622 overexpression in CRC indicated unfavorable prognosis and it regulated cell cycle to promote tumor growth both in vitro and in vivo. FOLR2 is a specific, functional target of miR-622, which negatively correlates with signature genes in cell cycle process to promote CRC proliferation. CONCLUSIONS: miR-622 upregulates cell cycle process by targeting FOLR2 to promote CRC proliferation, proposing a novel mechanism and treatment target in CRC epigenetic regulation of miR-622.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Receptor 2 de Folato , MicroRNAs , Humanos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Epigênese Genética , Receptor 2 de Folato/genética , Receptor 2 de Folato/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo
9.
BMC Bioinformatics ; 25(1): 32, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233745

RESUMO

BACKGROUND: Epi-transcriptome regulation through post-transcriptional RNA modifications is essential for all RNA types. Precise recognition of RNA modifications is critical for understanding their functions and regulatory mechanisms. However, wet experimental methods are often costly and time-consuming, limiting their wide range of applications. Therefore, recent research has focused on developing computational methods, particularly deep learning (DL). Bidirectional long short-term memory (BiLSTM), convolutional neural network (CNN), and the transformer have demonstrated achievements in modification site prediction. However, BiLSTM cannot achieve parallel computation, leading to a long training time, CNN cannot learn the dependencies of the long distance of the sequence, and the Transformer lacks information interaction with sequences at different scales. This insight underscores the necessity for continued research and development in natural language processing (NLP) and DL to devise an enhanced prediction framework that can effectively address the challenges presented. RESULTS: This study presents a multi-scale self- and cross-attention network (MSCAN) to identify the RNA methylation site using an NLP and DL way. Experiment results on twelve RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um) reveal that the area under the receiver operating characteristic of MSCAN obtains respectively 98.34%, 85.41%, 97.29%, 96.74%, 99.04%, 79.94%, 76.22%, 65.69%, 92.92%, 92.03%, 95.77%, 89.66%, which is better than the state-of-the-art prediction model. This indicates that the model has strong generalization capabilities. Furthermore, MSCAN reveals a strong association among different types of RNA modifications from an experimental perspective. A user-friendly web server for predicting twelve widely occurring human RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um) is available at http://47.242.23.141/MSCAN/index.php . CONCLUSIONS: A predictor framework has been developed through binary classification to predict RNA methylation sites.


Assuntos
60697 , RNA , Humanos , RNA/genética , Redes Neurais de Computação , Metilação , Processamento Pós-Transcricional do RNA
10.
Pest Manag Sci ; 80(3): 996-1007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37830147

RESUMO

BACKGROUND: The sugarcane borer Diatraea saccharalis (Lepidoptera) is a key pest on sugarcane and other grasses in the Americas. Biological control as well as insecticide treatments are used for pest management, but economic losses are still significant. The use of female sex pheromones for mating disruption or mass trapping in pest management could be established for this species, provided that economical production of pheromone is available. RESULTS: Combining in vivo labelling studies, differential expression analysis of transcriptome data and functional characterisation of insect genes in a yeast expression system, we reveal the biosynthetic pathway and identify the desaturase and reductase enzymes involved in the biosynthesis of the main pheromone component (9Z,11E)-hexadecadienal, and minor components hexadecanal, (9Z)-hexadecenal and (11Z)-hexadecenal. We next demonstrate heterologous production of the corresponding alcohols of the pheromone components, by expressing multiple steps of the biosynthetic pathway in yeast. CONCLUSION: Elucidation of the genetic basis of sex pheromone biosynthesis in D. saccharalis, and heterologous expression in yeast, paves the way for biotechnological production of the pheromone compounds needed for pheromone-based pest management of this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Mariposas , Saccharum , Atrativos Sexuais , Feminino , Animais , Atrativos Sexuais/química , Saccharomyces cerevisiae , Mariposas/genética , Feromônios
11.
Front Neurol ; 14: 1301046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073624

RESUMO

Background and purpose: Favorable wall apposition of a flow diverter (FD) is essential for the treatment of intracranial aneurysms. The irretrievability and final drop point uncertainty of the proximal tail of the FD increase the difficulty of achieving good tail apposition. Therefore, understanding the factors associated with FD tail malapposition would be helpful for clinical practice. Methods: A total of 153 patients with 161 FD deployments in the carotid artery between 2020 and 2023 were retrospectively collected from our center's database for this study. Patient demographics, aneurysm characteristics, FDs, carotid artery anatomy, periprocedural complications, discharge modified Rankin scale (MRS) scores, and follow-up outcomes were investigated by comparing patients with and without FD tail malapposition. Comparisons were made with t tests or Kruskal-Wallis tests for continuous variables and the Pearson χ2 or Fisher exact test for categorical variables. Logistic regression was conducted to determine the predictors of malapposition. Results: Tail malapposition occurred for 41 out of the 161 FDs (25.5%). Univariate analysis revealed that the FD brand, FD length, FD distal to proximal vessel diameter ratio, FD tail position (straight or curved), and curvature of the vessel curve were significantly associated with FD tail malapposition (p < 0.05). Further multivariate analysis demonstrated that the application of a surpass FD (p = 0.04), the FD distal to proximal vessel diameter ratio (p = 0.022), the FD tail position (straight or curved) (p < 0.001) and the curvature of the vessel curve (p < 0.001) were factors significantly associated with FD tail malapposition. No significant difference was found in periprocedural or follow-up outcomes. The classification of FD tail malapposition was determined from imaging. The two major patterns of FD tail malapposition are unattached tails and protrusive tails. Conclusion: FD tail malapposition might be associated with a larger FD distal to the proximal vessel diameter difference, a curved vessel where the FD tail is located, and a larger curvature of the vessel curve. FD tail malapposition can be classified into unattached tails and protrusive tails, which have their own characteristics and should be noted in clinical practice.

12.
Kidney Int Rep ; 8(12): 2742-2753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106587

RESUMO

Introduction: Podocyte infolding glomerulopathy (PIG) is a newly recognized rare glomerular injury. The clinical significance and mechanism of this injury pattern remains unclear. Methods: We conducted a retrospective study of renal biopsies from January 2018 to December 2020 in Kingmed Diagnostics. The renal biopsy features and clinical data were reviewed. Laser scanning microdissection and mass spectrometry (LMD/MS) was conducted to analyze the potential mechanism. Results: A total of 116 (0.092%) out of 126,086 biopsies were diagnosed as PIG during the period. Of these, 89 (76.7%) cases were found to have PIG coexisting with immune-complex associated glomerulonephritis (IC-PIG) whereas 27 (23.3%) were identified as isolated PIG without immunoglobulin or complement deposition. Systemic lupus erythematosus (SLE), especially with membranous lupus nephritis (LN), was diagnosed in most (70.8%) IC-PIG cases. Of the isolated PIG cases, 51.9% had no known underlying conditions; however, a relatively high positive rate (42.1%) of antinuclear antibody (ANA) was detected. Nearly half (47.5%) of the patients presented with nephrotic syndrome (NS). PIG grade was associated with proteinuria in isolated PIG (P = 0.035). LMD/MS revealed dysregulated cytoskeletal protein α-actinin4 (ACTN4) and tubulin beta-4 chain in PIG compared with normal donor kidney and minimal change disease (MCD). The displacement of ACTN4 into the glomerular basement membrane (GBM) was confirmed by the confocal microscope. Conclusion: PIG is a rare podocyte injury that can exist alone without underlying disease or be concurrent with various diseases, especially SLE. Podocyte cytoskeletal protein ACTN4 and tubulin beta-4 chain were dysregulated, which may be involved in the mechanism of PIG.

13.
Int J Med Robot ; : e2594, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37942653

RESUMO

BACKGROUND: A training system that allows the trainee to perform laparoscopic suturing in a realistic environment and measures the force applied to the tissue would be invaluable. This study aims to establish the construct and content validity of the training system we developed for the objective assessment of surgeons' skills. METHODS: Ten novices, 6 residents, and 6 experts performed the suturing and knot-tying task using the training system. Ten force-related parameters were used to analyse the system's construct validity. Experts were invited to evaluate the content validity with questionnaires. RESULTS: Eight parameters showed significant differences between the three groups. The construct validity results demonstrated that the system could distinguish the tissue handling ability of operators. The experts agreed that the system had excellent content validity with an average score of 4.71/5. CONCLUSIONS: The training system is likely valid for surgical training. It can realistically simulate surgical scenarios and evaluate the tissue handling ability of trainees.

14.
MedComm (2020) ; 4(6): e415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020709

RESUMO

To date, genome-wide association studies (GWASs) have discovered 35 susceptible loci of leprosy; however, the cumulative effects of these loci can only partially explain the overall risk of leprosy, and the causal variants and genes within these loci remain unknown. Here, we conducted out new GWASs in two independent cohorts of 5007 cases and 4579 controls and then a meta-analysis in these newly generated and multiple previously published (2277 cases and 3159 controls) datasets were performed. Three novel and 15 previously reported risk loci were identified from these datasets, increasing the known leprosy risk loci of explained genetic heritability from 23.0 to 38.5%. A comprehensive fine-mapping analysis was conducted, and 19 causal variants and 14 causal genes were identified. Specifically, manual checking of epigenomic information from the Epimap database revealed that the causal variants were mainly located within the immune-relevant or immune-specific regulatory elements. Furthermore, by using gene-set, tissue, and cell-type enrichment analyses, we highlighted the key roles of immune-related tissues and cells and implicated the PD-1 signaling pathways in the pathogenetic mechanism of leprosy. Collectively, our study identified candidate causal variants and elucidated the potential regulatory and coding mechanisms for genes associated with leprosy.

15.
Anal Chem ; 95(44): 16210-16215, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37899593

RESUMO

Tuberculosis (TB) is a chronic systemic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis). Methionine aminopeptidase 1 (MtMET-AP1) is a hydrolase that mediates the necessary post-translational N-terminal methionine excision (NME) of peptides during protein synthesis, which is necessary for bacterial proliferation and is a potential target for the treatment of tuberculosis. Based on the functional characteristics of MtMET-AP1, we developed an enzymatic activated near-infrared fluorescent probe DDAN-MT for rapid, highly selective, and real-time monitoring of endogenous MtMET-AP1 activity in M. tuberculosis. Using the probe DDAN-MT, a visually high-throughput screening technique was established, which obtained three potential inhibitors (GSK-J4 hydrochchloride, JX06, and lavendustin C) against MtMET-AP1 from a 2560 compounds library. More importantly, these inhibitors could inhibit the growth of M. tuberculosis H37Ra especially (MICs < 5 µM), with low toxicities on intestinal bacteria strains and human cells. Therefore, the visual sensing of MtMET-AP1 was successfully performed by DDAN-MT, and MtMET-AP1 inhibitors were discovered as potential antituberculosis agents.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos/farmacologia , Mycobacterium tuberculosis/metabolismo , Corantes Fluorescentes , Testes de Sensibilidade Microbiana , Aminopeptidases/metabolismo
16.
J Am Chem Soc ; 145(40): 22079-22085, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37784238

RESUMO

Due to the enormous chemical and structural diversities and designable properties and functionalities, covalent organic frameworks (COFs) hold great promise as tailored materials for industrial applications in electronics, biology, and energy technologies. They were typically obtained as partially crystalline materials, although a few single-crystal three-dimensional (3D) COFs have been obtained recently with structures probed by diffraction techniques. However, it remains challenging to grow single-crystal COFs with controlled morphology and to elucidate the local structures of 3D COFs, imposing severe limitations on the applications and understanding of the local structure-property correlations. Herein, we develop a method for designed growth of five types of single crystalline flakes of 3D COFs with controlled morphology, front crystal facets, and defined edge structures as well as surface chemistry using surfactants that can be self-assembled into layered structures to confine crystal growth in water. The flakes enable direct observation of local structures including monomer units, pore structure, edge structure, grain boundary, and lattice distortion of 3D COFs as well as gradually curved surfaces in kinked but single crystalline 3D COFs with a resolution of up to ∼1.7 Å. In comparison with flakes of two-dimensional crystals, the synthesized flakes show much higher chemical, mechanical, and thermal stability.

17.
ACS Synth Biol ; 12(10): 2947-2960, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37816156

RESUMO

In this study, a suite of efficient CRISPR/Cas9 tools was developed to overcome the genetic manipulation challenges posed by the polyploid genome of industrial yeast Cyberlindnera jadinii. The developed CRISPR/Cas9 system can achieve a 100% single-gene knockdown efficiency in strain NBRC0988. Moreover, the integration of a single exogenous gene into the target locus using a 50 bp homology arm achieved near-100% efficiency. The efficiency of simultaneous integration of three genes into the chromosome is strongly influenced by the length of the homology arm, with the highest integration efficiency of 62.5% obtained when selecting a homology arm of about 500 bp. By utilizing the CRISPR/Cas system, this study demonstrated the potential of C. jadinii in producing heterologous sterols. Through shake-flask fermentation, the engineered strains produced 92.1 and 81.8 mg/L of campesterol and cholesterol, respectively. Furthermore, the production levels of these two sterols were further enhanced through high-cell-density fed-batch fermentation in a 5 L bioreactor. The highest titer of campesterol reached 807 mg/L [biomass OD600 = 294, productivity of 6.73 mg/(L·h)]. The titer of cholesterol reached 1.52 g/L [biomass OD600 = 380, productivity of 9.06 mg/(L·h)], marking the first gram-scale production of steroidal compounds in C. jadinii.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Saccharomyces cerevisiae/genética , Candida/genética , Esteroides , Colesterol , Poliploidia , Esteróis
18.
Bioorg Chem ; 140: 106827, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683537

RESUMO

The high fidelity poses a central role in developing unnatural base pairs (UBPs), which means the high pairing capacity of unnatural bases with their partners, and low mispairing with all the natural bases. Different strategies have been used to develop higher-fidelity UBPs, including optimizing hydrophobic interaction forces between UBPs. Variant substituent groups are allowed to fine tune the hydrophobic forces of different UBPs' candidates. However, the modifications on the skeleton of TPT3 base are rare and the replication fidelity of TPT3-NaM remains hardly to improve so far. In this paper, we reasoned that modifying and/or expanding the aromatic surface by Bromo-substituents to slightly increase hydrophobicity of TPT3 might offer a way to increase the fidelity of this pair. Based on the hypothesis, we synthesized the bromine substituted TPT3, 2-bromo-TPT3 and 2, 4-dibromo-TPT3 as the new TPT3 analogs. While the enzyme reaction kinetic experiments showed that d2-bromo-TPT3-dNaM pair and d2, 4-dibromo-TPT3TP-dNaM pair had slightly less efficient incorporation and extension rates than that of dTPT3-dNaM pair, the assays did reveal that the mispairing of 2-bromo-TPT3 and 2, 4-dibromo-TPT3 with all the natural bases could dramatically decrease in contrast to TPT3. Their lower mispairing capacity promoted us to run polymerase chain amplification reactions, and a higher fidelity of d2-bromo-TPT3-dNaM pair could be obtained with 99.72 ± 0.01% of the in vitro replication fidelity than that of dTPT3-dNaM pair, 99.52 ± 0.09%. In addition, d2-bromo-TPT3-dNaM can also be effectively copied in E. coli cells, which showed the same replication fidelity as that of dTPT3-dNaM in the specific sequence, but a higher fidelity in the random sequence context.


Assuntos
Pareamento de Bases , Bromo , Replicação do DNA , Humanos , Escherichia coli , Cinética
19.
Huan Jing Ke Xue ; 44(9): 4843-4852, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699803

RESUMO

To investigate the pollution characteristics of carbonaceous components in PM10 and PM2.5 of road dust fall and soil dust in Xi'an and enrich their source profiles, samples from five sites of road dust fall and 16 sites of soil dust were collected in Xi'an from April to May 2015. The ZDA-CY01 particulate matter resuspension sampler was used to obtain PM10 and PM2.5 samples, and the Model5L-NDIR OC and EC analyzer were used to determine the concentrations of organic carbon (OC) and elemental carbon (EC) in PM10 and PM2.5. The pollution and sources of carbonaceous aerosol in PM10 and PM2.5 were investigated by analyzing OC and EC characteristics, ratio, and the principal component analysis statistical model. The results showed that the proportions of OC in PM10 and PM2.5 at the various dust fall sites differed, ranging from 6.0% to 19.4% and 7.6% to 29.8%, respectively. The ratios of EC in PM10 and PM2.5at the different dust fall sites were relatively small, accounting for 0.6%-2.2% and 0.2%-3.6% in urban sites, respectively; however, EC was almost undetectable in most peripheral soil dust. The proportions of carbonaceous components in PM10 and PM2.5 followed the order of urban road dust fall>external control dust>river beach soil dust>soil dust and urban road dust fall>soil dust>external control dust>river beach soil dust, respectively. OC dominated the carbonaceous aerosols at the different sites, which was relatively low in urban road dust fall. The OC to total carbon (TC) ratios in PM10 and PM2.5 at urban road dust fall were 85.2%-95.3% and 87.9%-98.9%, respectively. The OC to TC ratios in PM10 and PM2.5 of soil dust were relatively high, exceeding 99%. Carbonaceous components were primarily concentrated in fine particles. The pollution distribution of carbonaceous components in the urban road dust fall sites was consistent, whereas that in the different soil dust sites were quite different. The carbonaceous components in urban road dust fall and soil dust were primarily affected by pollutant source emissions such as biomass burning, coal burning, gasoline, and diesel vehicle exhaust. There were differences in the source contribution rates of carbonaceous aerosols in PM10 and PM2.5.

20.
Huan Jing Ke Xue ; 44(9): 5176-5185, 2023 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-37699835

RESUMO

This study was conducted to explore the fertilization potential of the high-volume straw returning mode in cooperation with Bacillus and other functional flora on desertification soil and to analyze the changing characteristics of soil carbon, nitrogen, and phosphorus components and functional activities of flora, so as to provide a basis for efficiently improving desertification soil fertility. A randomized block experiment was conducted, setting straw not returning to field (CK) and high-volume straw returning of 6.00 kg·m-2 (ST1), 12.00 kg·m-2 (ST2), 24.00 kg·m-2+(ST3), 6.00 kg·m-2+Bacillus (SM1), 12.00 kg·m-2+Bacillus (SM2), and 24.00 kg·m-2+Bacillus (SM3). In this study, we conducted a randomized block experiment to investigate the effect of the treatment for soil microbial and nutrient contents using 16S rRNA high-throughput sequencing and soil biochemical properties analysis. Our results showed that:① the α diversity of the soil bacterial community was significantly reduced by the combination of high-volume straw returning and Bacillus application. ② The single mode of high-volume straw returning significantly enriched Proteobacteria and decreased the relative abundance of Actinobacteriota, and the effect of the combined application of Bacillus on the variability of bacterial community structure was more significant. At the genus level, the relative abundance of beneficial bacteria such as Pseudomonas, Rhodanobacter, and Bacillus increased significantly. ③ The functional prediction based on FAPROTAX found that the high-volume straw returning combined with Bacillus could significantly improve the decomposition potential of soil flora to organic substances and the transformation potential of nitrogen components. ④ Compared with that in the control, the application of Bacillus with high-volume straw returning significantly increased the contents of soil organic matter, total phosphorus, and available phosphorus by 31.20-32.75 g·kg-1, 0.11-0.18 g·kg-1, and 29.69-35.09 mg·kg-1, respectively. In conclusion, the application of Bacillus in the sand-blown area with a high-volume straw returning can notably improve the contents of soil organic matter and phosphorus components, the functional activity of bacteria, and the abundance of beneficial bacteria, which is of great significance to the rapid improvement of soil fertility in the middle- and low-yield fields in arid areas.


Assuntos
Bacillus , Solo , Conservação dos Recursos Naturais , RNA Ribossômico 16S , Bactérias/genética , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...